Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.

نویسندگان

  • Ju-Yi Hsieh
  • Jyung-Hurng Liu
  • Yi-Wen Fang
  • Hui-Chih Hung
چکیده

Human m-NAD(P)-ME [mitochondrial NAD(P)+-dependent ME (malic enzyme)] is a homotetramer, which is allosterically activated by the binding of fumarate. The fumarate-binding site is located at the dimer interface of the NAD(P)-ME. In the present study, we decipher the functional role of the residue Lys57, which resides at the fumarate-binding site and dimer interface, and thus may be involved in the allosteric regulation and subunit-subunit interaction of the enzyme. In the present study, Lys57 is replaced with alanine, cysteine, serine and arginine residues. Site-directed mutagenesis and kinetic analysis strongly suggest that Lys57 is important for the fumarate-induced activation and quaternary structural organization of the enzyme. Lys57 mutant enzymes demonstrate a reduction of Km and an elevation of kcat following induction by fumarate binding, and also display a much higher maximal activation threshold than WT (wild-type), indicating that these Lys57 mutant enzymes have lower affinity for the effector fumarate. Furthermore, mutation of Lys57 in m-NAD(P)-ME causes the enzyme to become less active and lose co-operativity. It also increased K0.5,malate and decreased kcat values, indicating that the catalytic power of these mutant enzymes was significantly impaired following mutation of Lys57. Analytical ultracentrifugation analysis demonstrates that the K57A, K57S and K57C mutant enzymes dissociate predominantly into dimers, with some monomers present, whereas the K57R mutant forms a mixture of dimers and tetramers, with a small amount of the enzyme in monomeric form. The dimeric form of these Lys57 mutants, however, cannot be reconstituted into tetramers with the addition of fumarate. Modelling structures of the Lys57 mutant enzymes show that the hydrogen bond network in the dimer interface where Lys57 resides may be reduced compared with WT. Although the fumarate-induced activation effects are partially maintained in these Lys57 mutant enzymes, the mutant enzymes cannot be reconstituted into tetramers through fumarate binding and cannot recover their full enzymatic activity. In the present study, we demonstrate that the Lys57 residue plays dual functional roles in the structural integrity of the allosteric site and in the subunit-subunit interaction at the dimer interface of human m-NAD(P)-ME.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional roles of the tetramer organization of malic enzyme.

Malic enzyme has a dimer of dimers quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In addition, the enzyme has distinct active sites within each subunit. The mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) isoform behaves cooperatively and allosterically and exhibits a quaternary structure in dimer-tetramer equilibrium. The cyt...

متن کامل

Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases.

BACKGROUND Malic enzymes catalyze the oxidative decarboxylation of malate to pyruvate and CO2 with the concomitant reduction of NAD(P)+ to NAD(P)H. They are widely distributed in nature and have important biological functions. Human mitochondrial NAD(P)+-dependent malic enzyme (mNAD-ME) may have a crucial role in the metabolism of glutamine for energy production in rapidly dividing cells and tu...

متن کامل

Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate.

The regulation of human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME) by ATP and fumarate may be crucial for the metabolism of glutamine for energy production in rapidly proliferating tissues and tumors. Here we report the crystal structure at 2.2 A resolution of m-NAD-ME in complex with ATP, Mn2+, tartronate, and fumarate. Our structural, kinetic, and mutagenesis studies reveal unexp...

متن کامل

A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P)+-dependent malic enzyme (ME2) and induces cellular senescence

Here, we found a natural compound, embonic acid (EA), that can specifically inhibit the enzymatic activity of mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME, ME2) either in vitro or in vivo. The in vitro IC50 value of EA for m-NAD(P)-ME was 1.4 ± 0.4 μM. Mutagenesis and binding studies revealed that the putative binding site of EA on m-NAD(P)-ME is located at the fumarate binding sit...

متن کامل

Fumarate Analogs Act as Allosteric Inhibitors of the Human Mitochondrial NAD(P)+-Dependent Malic Enzyme

Human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by the four-carbon trans dicarboxylic acid, fumarate. Previous studies have suggested that the dicarboxylic acid in a trans conformation around the carbon-carbon double bond is required for the allosteric activation of the enzyme. In this paper, the allosteric effects of fumarate analogs on m-NAD(P)-ME ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 420 2  شماره 

صفحات  -

تاریخ انتشار 2009